Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123293, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184153

RESUMO

This study constructed a cyanobacteria-bacteria consortium using a mixture of non-toxic cyanobacteria (Synechococcus sp. and Chroococcus sp.) immobilized in calcium alginate and native bacteria in wastewater. The consortium was used for the advanced treatment of sulfamethoxazole-polluted wastewater and the production of cyanobacterial lipid. Mixed cyanobacteria increased the abundances of denitrifying bacteria and phosphorus-accumulating bacteria as well as stimulated various functional enzymes in the wastewater bacterial community, which efficiently removed 70.01-71.86% of TN, 91.45-97.04% of TP and 70.72-76.85% of COD from the wastewater. The removal efficiency of 55.29-69.90% for sulfamethoxazole was mainly attributed to the upregulation of genes encoding oxidases, reductases, oxidoreductases and transferases in two cyanobacterial species as well as the increased abundances of Stenotrophomonas, Sediminibacterium, Arenimonas, Novosphingobium, Flavobacterium and Hydrogenophaga in wastewater bacterial community. Transcriptomic responses proved that mixed cyanobacteria presented an elevated lipid productivity of 33.90 mg/L/day as an adaptive stress response to sulfamethoxazole. Sediminibacterium, Flavobacterium and Exiguobacterium in the wastewater bacterial community may also promote cyanobacterial lipid synthesis through symbiosis. Results of this study proved that the mixed cyanobacteria-bacteria consortium was a promising approach for advanced wastewater treatment coupled to cyanobacterial lipid production.


Assuntos
Synechococcus , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Antibacterianos , Sulfametoxazol , Flavobacterium , Bacteroidetes , Lipídeos
2.
J Anal Methods Chem ; 2012: 728128, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22649750

RESUMO

A multichannel short-wave near-infrared (SW-NIR) spectrometer module based on charge-coupled device (CCD) detection was designed. The design relied on a tungsten lamp enhanced by light emitting diodes, a fixed grating monochromator and a linear CCD array. The main advantages were high optical resolution and an optimized signal-to-noise ratio (0.24 nm and 500, resp.) in the whole wavelength range of 650 to 1100 nm. An application to alcohol determination using partial least squares calibration and the temperature correction was presented. It was found that the direct transfer method had significant systematic prediction errors due to temperature effect. Generalized least squares weighting (GLSW) method was utilized for temperature correction. After recalibration, the RMSEP found for the 25°C model was 0.53% v/v and errors of the same order of magnitude were obtained at other temperatures (15, 35 and 40°C). And an r(2) better than 0.99 was achieved for each validation set. The possibility and accuracy of using the miniature SW-NIR spectrometer and GLSW transfer calibration method for alcohol determination at different temperatures were proven. And the analysis procedure was simple and fast, allowing a strict control of alcohol content in the wine industry.

3.
Plant Physiol ; 155(1): 130-41, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21098677

RESUMO

In land-plant chloroplasts, the grana play multiple roles in photosynthesis, including the potential increase of photosynthetic capacity in light and enhancement of photochemical efficiency in shade. However, the molecular mechanisms of grana formation remain elusive. Here, we report a novel gene, Grana-Deficient Chloroplast1 (GDC1), required for chloroplast grana formation in Arabidopsis (Arabidopsis thaliana). In the chloroplast of knockout mutant gdc1-3, only stromal thylakoids were observed, and they could not stack together to form appressed grana. The mutant exhibited seedling lethality with pale green cotyledons and true leaves. Further blue native-polyacrylamide gel electrophoresis analysis indicated that the trimeric forms of Light-Harvesting Complex II (LHCII) were scarcely detected in gdc1-3, confirming previous reports that the LHCII trimer is essential for grana formation. The Lhcb1 protein, the major component of the LHCIIb trimer, was substantially reduced, and another LHCIIb trimer component, Lhcb2, was slightly reduced in the gdc1-3 mutant, although their transcription levels were not altered in the mutant. This suggests that defective LHCII trimer formation in gdc1-3 is due to low amounts of Lhcb1 and Lhcb2. GDC1 encodes a chloroplast protein with an ankyrin domain within the carboxyl terminus. It was highly expressed in Arabidopsis green tissues, and its expression was induced by photosignaling pathways. Immunoblot analysis of the GDC1-green fluorescent protein (GFP) fusion protein in 35S::GDC1-GFP transgenic plants with GFP antibody indicates that GDC1 is associated with an approximately 440-kD thylakoid protein complex instead of the LHCII trimer. This shows that GDC1 may play an indirect role in LHCII trimerization during grana formation.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas/genética , Tilacoides/metabolismo , Sequência de Aminoácidos , Anquirinas , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Dados de Sequência Molecular , Mutação/genética , Filogenia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Multimerização Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Tilacoides/genética , Tilacoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...